¡¶×ÔÈ»¡·ÔÓÖ¾±¨µÀ½µÌÇÒ©¶÷¸ñÁо»µÄ½á¹¹»úÖÆ
ÆÏÌÑÌÇÊǵØÇòÉϾø´ó¶àÊýÉúÎï×îÖØÒªµÄÄÜÁ¿À´Ô´Ö®Ò»¡£ÆÏÌÑÌǾѪҺѻ·±»ÔËÊäÖÁÉíÌå¸÷¸öÆ÷¹Ù¡£ÔÚѪҺÁ÷¾ÉöÔàʱ£¬¾ø´ó²¿·ÖÆÏÌÑÌǻᱻÂ˳ö£¬È»ºóÔÙ±»ÖØÎüÊÕ»ØÑªÒº¡£ÉöÔàÿÌìÖØÎüÊյįÏÌÑÌÇ´ïµ½180g£¬²Å±£Ö¤ÁË×îÖÕÅųöµÄÄòÒºÖв»º¬ÆÏÌÑÌÇ1¡£Òò´Ë£¬ÉöÔàÊÇά³ÖѪ½¬ÖÐÆÏÌÑÌÇˮƽµÄÖØÒªÆ÷¹Ù¡£
ÉöÔàÖиºÔðÆÏÌÑÌÇÖØÎüÊÕµÄÖ÷Òªµ°°×ÎªÄÆ-ÆÏÌÑÌǹ²×ªÔ˵°°×£¨SGLT£©£¬ÆäÊôÓÚÈÜÖÊÔØÌåתÔË×Ó³¬¼Ò×å5A£¨solute carrier transporter 5A£©ÖеÄÒ»Ô±£¬ÓëGLUT£¨SLC2A£©½ØÈ»²»Í¬2¡£SGLTµ°°×ÀûÓÃÄÆÀë×ÓµÄµç»¯Ñ§ÊÆÇý¶¯ÆÏÌÑÌÇĿō¶ÈÌݶÈתÔË¡£Òò´Ë£¬ÔÚתÔËÆÏÌÑÌǵÄͬʱ£¬°éËæ×ÅÄÆÀë×ÓµÄÉúµçתÔË2¡£ÔÚÈËÀàÖУ¬SGLT ¹²·¢ÏÖÓÐÁùÖÖÑÇÐÍ£¬ÆäÖÐÔÚÉöÔàÖÐÖ÷ÒªÆð×÷ÓõÄΪSGLT1ºÍSGLT2¡£SGLT2λÓÚÉöÔà½üÇúС¹ÜµÄS1ºÍS2½Ú¶Î£¬¸ºÔðÔÄòÖÐ90%ÆÏÌÑÌǵÄÖØÎüÊÕ3£¬²¢ÇÒÆä»îÐÔÒÀÀµÓÚ¸½ÊôÑÇ»ùMAp174¡£SGLT1λÓÚ½üÇúС¹ÜS3½Ú¶Î£¬¸ºÔð²ÐÓàÆÏÌÑÌǵÄÖØÎüÊÕ¡£SGLT2µÄʧ»îÍ»±ä»áÒýÆð¼Ò×åÐÔÉöÐÔÄòÌÇ£¬ÕâÀ໼Õß³ýÁËÄòÌǸßÒÔÍâûÓÐÆäËûÃ÷ÏÔµÄÁÙ´²Ö¢×´3,4¡£´ËÍ⣬ÔçÔÚ1886Ä꣬µÂ¹úҩѧ¼ÒԼɪ·ò·ë÷ÁÖ·¢ÏÖ´ÓÆ»¹ûÊ÷¸ùƤÖÐÝÍÈ¡µÄÌìÈ»²úÎï¸ùƤÜÕ£¨phlorizin£©¿ÉÒÔʹ¶¯Îï¶àÄò¡¢ÅųöÄòÌÇ¡¢¼õÇáÌåÖØ¡£ËæºóµÄÑо¿·¢ÏÖ£º¸ùƤÜÕ¾ÍÊÇSGLTµÄÌìÈ»ÒÖÖÆ¼Á¡£ÉÏÊÀ¼Í80Äê´úÄ©£¬90Äê´ú³õ£¬±àÂ븺ÔðÆÏÌÑÌÇÖØÎüÊÕµÄSGLT1ºÍSGLT2µ°°×µÄ»ùÒòÒ²ÏȺ󱻿Ë¡³öÀ´5,6¡£ÕâһϵÁÐÔÚ»ù´¡Ñо¿·½ÃæµÄ½øÕ¹´ÙÊ¹ÖÆÒ©½ç¿ªÊ¼¹Ø×¢SGLT2ÒÖÖÆ¼ÁµÄ¿ª·¢¡£ÆäÀíÄîÊÇÏ£Íûͨ¹ýÒÖÖÆSGLTµ°°×µÄ¹¦ÄÜ£¬Ê¹ÔÄòÖÐµÄÆÏÌÑÌÇÎÞ·¨±»ÖØÎüÊÕ£¬´Ó¶øÍ¨¹ýÄòÒºÅųöÌåÍ⣬´ïµ½¼ä½Ó½µÑªÌǵÄÄ¿µÄ¡£ÓëSGLT2Ïà±È£¬SGLT1ÔÚÉöÔàÖнö¸ºÔðÖØÎüÊÕС²¿·ÖÆÏÌÑÌÇ£¬²¢ÇÒ»¹ÔÚ³¦µÀÖиºÔðÆÏÌÑÌǵÄÉãÈ¡7£¬ÒÖÖÆÆä¹¦ÄܺóµÄ½µÌÇЧ¹ûºÍ¸±×÷ÓÃÓдý½øÒ»²½Ñо¿¡£ËùÒÔSGLT2³ÉΪÖÎÁÆÌÇÄò²¡µÄÖØÒªÐ¡·Ö×ÓÒ©Îï°ÐµãÖ®Ò»¡£
»ùÓÚÌìÈ»²úÎï¸ùƤÜյĽṹ£¬Ä¿Ç°£¬ÒÑÓжàÖÖSGLT2µÄÌØÒìÐÔÒÖÖÆ¼Á±»³É¹¦¿ª·¢³öÀ´£¬²¢Ó¦ÓÃÓÚÁÙ´²ÓÃÓÚÖÎÁÆ2ÐÍÌÇÄò²¡£¬±ÈÈç¶÷¸ñÁо»£¨Empagliflozin£©¡¢¿¨¸ñÁо»£¨Canagliflozin£©¡¢´ï¸ñÁо»£¨Dapagliflozin£©µÈ8£¬ÆäÖж÷¸ñÁо»¶ÔSGLT2µÄÑ¡ÔñÐÔÊÇSGLT1µÄ2500±¶9¡£ÕâЩҩÎï½µÌÇÁÆÐ§ÏÔÖø£¬ÑéÖ¤ÁË¡°Í¨¹ýÄò³öÌÇÀ´½µÑªÌÇ¡±ÕâÒ»ÖÎÁÆË¼Â·µÄÕýÈ·ÐÔ¡£³ýÁ˽µÑªÌǵŦÄÜÍ⣬ÕâÈýÖÖSGLT2µÄÒÖÖÆ¼Á»¹ÓÐÖÎÁÆÐÄË¥¡¢ÉöÔà±£»¤µÈ¶àÖÖÁÙ´²Ð§¹û10£¬±»ÓþΪ¡°ÉñÒ©¡±¡£¾¡¹ÜSGLT2ÒÖÖÆ¼ÁÔÚ2ÐÍÌÇÄò²¡µÄÖÎÁÆÖоßÓÐÖØÒª¼ÛÖµ£¬Ä¿Ç°ÈÔ²»Çå³þÕâЩҩÎïÊÇÈçºÎÒÖÖÆSGLT2µ°°×¹¦Äܵġ£
2021Äê12ÔÂ8ÈÕ£¬±±¾©´óѧδÀ´¼¼ÊõѧԺ·Ö×ÓҽѧÑо¿Ëù³ÂÀ×Ñо¿Ô±¿ÎÌâ×éÔÚNatureÔÓÖ¾·¢±íÌâĿΪ¡°Structural basis of inhibition of the human SGLT2-MAp17 glucose transporter¡±µÄÎÄÕ£¬±¨µÀÁËÈËÔ´SGLT2-MAp17¸´ºÏÎïÓëÒÖÖÆ¼Á¶÷¸ñÁо»½áºÏµÄ½á¹¹¡£ÔÚ¸ÃÏîÑо¿ÖУ¬¿ÎÌâ×é³ÉÔ±¾¹ý¶àÄê»ýÀÛºÍÃþË÷£¬´´ÐÂÐԵزÉÓá°Èý½ÓÍ·¹Ì¶¨¡±µÄ²ßÂÔ¿Ë·þÁ˸ø´ºÏÎï·Ö×ÓÁ¿½ÏСµÄ¼¼ÊõÄÑÌ⣬»ñµÃÁË·Ö±æÂÊΪ2.95?µÄÀä¶³µç¾µ½á¹¹¡£½á¹¹ÏÔʾÒÖÖÆ¼Á¶÷¸ñÁо»½áºÏÔÚSGLT2µ°°×µÄÖм䣬ÒÖÖÆ¼ÁµÄÆÏÌÑÌÇ»ùÕ¼¾ÝÁËÆÏÌÑÌǵĽáºÏλµã£¬ÆÏÌÑÌÇ»ùµÄôÇ»ùÓëSGLT2µÄ°±»ùËá·¢ÉúÁ˼«ÐÔÏ໥×÷Óá£ÒÖÖÆ¼ÁµÄÌÇÜÕÅä»ù´ÓÆÏÌÑÌǽáºÏλµãÍùÍâÑÓÉ죬ֱµ½µ°°×Íâ²à£¬½«SGLT2Ëø¶¨ÔÚÏòÍ⿪·Å״̬¡£¸Ã¹¤×÷È·¶¨ÁËSGLT2ÒÖÖÆ¼ÁµÄ½áºÏλµã£¬²ûÊÍÁËÒÖÖÆ¼ÁÒÖÖÆSGLT2µÄ¹¤×÷»úÖÆ£¬ÎªSGLT¼Ò×åÒÖÖÆ¼ÁµÄ½øÒ»²½ÓÅ»¯ÌṩÁ˽ṹ»ù´¡¡£
ͼ1£ºSGLT2Óë¶÷¸ñÁо»µÄ×÷ÓÃģʽ
±±¾©´óѧδÀ´¼¼ÊõѧԺ·Ö×ÓҽѧËù²©Ê¿Ñо¿ÉúÅ£ÑÓ¸ïΪ±¾ÂÛÎĵĵÚÒ»×÷Õߣ¬³ÂÀ×ΪÂÛÎĵÄͨѶ×÷Õß¡£¸ÃÑо¿»¹µÃµ½³ÂÀ׿ÎÌâ×éµÄ²©Ê¿ÉúÁõÈñºÍ²©Ê¿ºó¹Ü³É³É£¬±±¾©´óѧδÀ´¼¼ÊõѧԺ³ÂÖªÐÐÑо¿Ô±¼°Æä²©Ê¿ÉúÕÅÔ´ÀûÓþ«Õ¿µÄÓ«¹â±ê¼Ç¼¼Êõ£¬Îª±¾¿ÎÌâÌṩÁ˸ߴ¿¶ÈÓ«¹â±ê¼ÇµÄÆÏÌÑÌǵ×Îï¡£²ªÁÖ¸ñÒó¸ñº²Ò©ÒµÓÐÏÞ¹«Ë¾£¨Boehringer-Ingelheim pharma£¬ GmbH & Co KG£©µÄStefan HoererºÍHerbert NarΪ±¾¿ÎÌâÌṩÁ˶÷¸ñÁо»¼°ÆäÍ¬Î»ËØ±ê¼ÇÎï¡£ÔڸÿÎÌ⿪չ¹ý³ÌÖУ¬²ªÁÖ¸ñÒó¸ñº²Öйú·Ö¹«Ë¾µÄÕÅΡâùºÍÒ¶¿¡Çà¸øÓèÁË´óÁ¦ÐÖú¡£¸Ã¹¤×÷Àä¶³µç¾µÑùÆ·ÖÆ±¸¡¢É¸Ñ¡ºÍ²É¼¯ÔÚ±±¾©´óѧµç¾µÆ½Ì¨ºÍÀä¶³µç¾µÆ½Ì¨Íê³É£¬µÃµ½ÁËÀîѩ÷¡¢¹ùÕñçô¡¢ÉÛ²©¡¢ÅáϼºÍÍõ¹úÅôµÈÈ˵İïÖú¡£Ì¨Íå´óѧµÄÐíÀöÇ䣨Lih-Ching Hsu£©½ÌÊÚÀ¡ÔùÁË1-NBDGÑùÆ·ÓÃÓÚ¿ÎÌâµÄǰÆÚÃþË÷¡£Í¬Î»ËØÊµÑéÓɱ±¾©´óѧÉúÃü¿ÆÑ§Ñ§ÔºµÄ»ÆÊ¿ÌÃÐÖúÍê³É¡£¸ÃÏîÄ¿µÄÊý¾Ý´¦Àí»ñµÃÁ˱±¾©´óѧCLS¼ÆËãÆ½Ì¨¼°Î´Ãû³¬ËãÆ½Ì¨µÄÓ²¼þºÍ¼¼ÊõÖ§³Ö¡£²©Ê¿ºó¹Ü³É³ÉÊܵ½Á˲ªÁÖ¸ñÒó¸ñº²¹«Ë¾²©Ê¿ºóÏîÄ¿µÄÖ§³Ö£»¸Ã¿ÎÌâµÃµ½¹ú¼Ò×ÔÈ»¿ÆÑ§»ù½ðµÈ¾·ÑÖ§³Ö¡£³ÂÀ×ʵÑéÊÒ³¤ÆÚÖÂÁ¦ÓÚ´úлÀ༲²¡ºÍÐÄѪ¹Ü¼²²¡Ò©Îï°ÐµãµÄ¹¤×÷»úÖÆ£¬ÏȺó½âÎöÁËÒȵºÏ¸°ûÆÏÌÑÌǸÐÊÜÆ÷KATp£¬Ò»Ñõ»¯µªÊÜÌåsGCµÈÖØÒªµ°°×µÄ½á¹¹¡£
²Î¿¼ÎÄÏ×£º
1 DeFronzo, R. A., Norton, L. & Abdul-Ghani, M. Renal, metabolic and cardiovascular considerations of SGLT2 inhibition. Nat Rev Nephrol13, 11-26, doi:10.1038/nrneph.2016.170 (2017).
2 Wright, E. M., Loo, D. D. & Hirayama, B. A. Biology of human sodium glucose transporters. physiol. Rev.91, 733-794, doi:10.1152/physrev.00055.2009 (2011).
3 Kanai, Y., Lee, W. S., You, G., Brown, D. & Hediger, M. A. The human kidney low affinity Na+/glucose cotransporter SGLT2. Delineation of the major renal reabsorptive mechanism for D-glucose. J. Clin. Invest.93, 397-404, doi:10.1172/JCI116972 (1994).
4 Coady, M. J. et al. MAp17 Is a Necessary Activator of Renal Na+/Glucose Cotransporter SGLT2. J. Am. Soc. Nephrol.28, 85-93, doi:10.1681/ASN.2015111282 (2017).
5 Hediger, M. A., Coady, M. J., Ikeda, T. S. & Wright, E. M. Expression cloning and cDNA sequencing of the Na+/glucose co-transporter. Nature330, 379-381, doi:10.1038/330379a0 (1987).
6 Wells, R. G. et al. Cloning of a human kidney cDNA with similarity to the sodium-glucose cotransporter. Am. J. physiol.263, F459-465, doi:10.1152/ajprenal.1992.263.3.F459 (1992).
7 Gorboulev, V. et al. Na+-D-glucose Cotransporter SGLT1 is pivotal for Intestinal Glucose-Absorption and Glucose-Dependent Incretin Secretion. Diabetes61, 187-196, doi:10.2337/db11-1029 (2012).
8 Genuardi, M. V. & Mather, p. J. The dawn of the four-drug era? SGLT2 inhibition in heart failure with reduced ejection fraction. Ther Adv Cardiovasc Dis15, 17539447211002678, doi:10.1177/17539447211002678 (2021).
9 Williams, D. M., Nawaz, A. & Evans, M. Sodium-Glucose Co-Transporter 2 (SGLT2) Inhibitors: Are They All the Same? A Narrative Review of Cardiovascular Outcome Trials. Diabetes Ther12, 55-70, doi:10.1007/s13300-020-00951-6 (2021).
10 Zinman, B. et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N. Engl. J. Med.373, 2117-2128, doi:10.1056/NEJMoa1504720 (2015).